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Total Ozone From the Ozone Monitoring Instrument
(OMI) Using the DOAS Technique

J. Pepijn Veefkind, Johan F. de Haan, Ellen J. Brinksma, Mark Kroon, and Pieternel F. Levelt

Abstract—This paper describes the algorithm for deriving the
total column ozone from spectral radiances and irradiances mea-
sured by the Ozone Monitoring Instrument (OMI) on the Earth
Observing System Aura satellite. The algorithm is based on the
differential optical absorption spectroscopy technique. The main
characteristics of the algorithm as well as an error analysis are de-
scribed. The algorithm has been successfully applied to the first
available OMI data. First comparisons with ground-based instru-
ments are very encouraging and clearly show the potential of the
method.

Index Terms—Ozone, remote sensing, satellites applications, ter-
restrial atmosphere.

I. INTRODUCTION

ON JULY 15, 2004, the Ozone Monitoring Instrument
(OMI) onboard the National Aeronautics and Space Ad-

ministration’s (NASA) Earth Observing System (EOS) Aura
satellite was launched. The OMI is the first of a new generation
of spaceborne spectrometers that combine a high spatial reso-
lution (13 24 km at nadir) with daily global coverage [1].
Measuring the trend in stratospheric ozone as well as detecting
tropospheric ozone on regional scales are top priorities among
the science objectives for the Aura satellite [2].

Space-based measurements of the ozone column have
been performed operationally since the 1970s with the Solar
Backscatter Ultraviolet (SBUV) and Total Ozone Mapping
Spectrometer (TOMS) series of instruments [3]. These mea-
surements have played a major role in atmospheric chemistry,
for example by monitoring the ozone layer [4], as a tracer
for measuring stratospheric dynamics (e.g., see [5]), and by
detecting tropospheric ozone pollution on a regional scale
[6]. The original SBUV and TOMS instruments measure the
backscattered radiance in a few 1-nm-wide bands. From these
bands, the ozone column is derived using radiances measured
at two wavelengths, while other wavelengths are used for diag-
nostics and error correction [7], [8]. In 1995 the Global Ozone
Monitoring Experiment (GOME) instrument was launched as
the first of a series of space instruments that measure the ultra-
violet and visible part of the spectrum with a moderately high
spectral resolution. In 2002 the SCIAMACHY instrument was
launched, followed by OMI in 2004. These spectrometers make
it possible to derive the ozone column using differential optical
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absorption spectroscopy (DOAS) [9]–[11], since they measure
the entire Huggins ozone absorption bands continuously rather
than just at a few wavelengths. DOAS was developed for
ground-based measurements of atmospheric trace gases [12],
[13], but can also be applied to measurements from space.
DOAS derives the ozone column by fitting a reference ozone
absorption cross section at the instrument’s spectral resolution
to the measured sun-normalized radiance. The main advantages
of DOAS compared to the original SBUV/TOMS techniques
are that DOAS is less sensitive to the radiometric calibration of
the instrument and less sensitive to disturbing factors like ab-
sorbing aerosols, as it makes use of a relatively large absorption
spectral range with several to many spectral features. In this
paper the implementation of the DOAS technique for measuring
total ozone is described. First results of applying the algorithm
to OMI data are presented, as well as first comparisons with
ground-based data.

II. ALGORITHM DESCRIPTION

The OMI total ozone DOAS algorithm consists of three steps.
First, the DOAS method is used to fit the differential absorption
cross section of ozone to the measured sun-normalized Earth
radiance spectrum, to obtain the so-called slant column density.
In the second step the slant column density is translated into
the vertical column density using the so-called air mass factor.
The third step consists of a correction for cloud effects, to ac-
count for ozone that is obscured by clouds. In this section we
describe these steps, including the physical background, as well
as assumptions and a priori information on which the results
depend.

A. Step 1: Deriving the Slant Column Density

The first step in the ozone DOAS algorithm is to determine the
slant column density, which is defined as the amount of ozone
along an average path taken by photons within a fit window as
they travel from the sun, through the atmosphere to the satel-
lite sensor. There are many paths that will contribute to the slant
column density, involving scattering and absorption within the
atmosphere as well reflection by the surface. The slant column
density is determined by fitting a function to the ratio of the
measured Earth radiance to the solar irradiance data. This fit is
applied to data taken in a certain wavelength range, called the
fit window. A polynomial function, which serves as a high-pass
filter, is applied to account for scattering and absorption that
vary gradually with the wavelength, e.g., reflection by the sur-
face and scattering by molecules, aerosols, and clouds. Also,
the high-pass filter takes out gradually varying radiometric cali-
bration errors and other instrumental multiplicative effects. The
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Fig. 1. Example of a DOAS fit on OMI data measured on November 1,
2004 13:23:32 UTC. (Upper panel) Measured sun-normalized radiance and the
result of the DOAS fit. (Lower panel) Residual between measurement and fit,
expressed as the relative difference between the two.

slant column density is derived from the filtered data, which
contains spectral features of ozone and other molecules in the
fit window. Fig. 1 shows a DOAS fit applied to OMI data. The
fit function that is used in the OMI algorithm is based on the
following equation:

(1)

where is the radiance; is the extraterrestrial solar irradiance;
is a low-order polynomial; is the ozone slant column den-

sity; is the absorption cross section of ozone; is the wave-
length; and is the effective ozone temperature. To properly
account for temperature effects the effective ozone temperature
is derived from the DOAS fit itself. This is done by linearizing
the cross section around a reference temperature , thus writing
the ozone absorption cross section in (1) as

(2)

Equation (1) is only accurate when dealing with elastic scat-
tering. However, approximately 6% of the light scattering events
in the OMI fit window are inelastic, meaning that the scattered
light is at a different wavelength than the incoming light. The
effect of this inelastic rotational Raman scattering is that struc-
tures in the spectrum are reduced. This holds for Fraunhofer
structures (the well-known Ring effect) as well as for spec-
tral structures caused by absorption in the atmosphere. Because
Raman scattering reduces spectral structures, not accounting for
it properly can cause an underestimation of the slant column
density of the order 3% to 10% [14]. When including terms that
account for Raman scattering, the fit function can be expressed
as

(3)

where is the extraterrestrial solar irradiance convoluted
with the Raman lines; is fit parameter to scale the radi-
ance due to Raman scattering and is determined from the depth
of the Ring lines in the fit window; and is an effective ozone
absorption cross section partly scrambled by rotational Raman
scattering. Incident sunlight traveling through the atmosphere
picks up absorption features of ozone. When rotational Raman
scattering occurs these absorption features are convoluted with
rotational Raman lines yielding scrambled absorption features.
After the Raman scattering, light picks up ozone absorption fea-
tures again, and the ozone signal at the detector is partly scram-
bled. This process can be described in terms of an effective cross
section that is partly scrambled by Raman scattering. Detailed
descriptions are given by [15] and [16].

The fit parameters of (3) ( , and the polynomial
coefficients) are determined using a nonlinear, least squares fit.
Information on the quality of the fit and the fit parameters is
derived from the associated covariance matrix. The reference
ozone cross-sections were determined by convolving the spec-
trally recalibrated cross-sections of [17] and [18], with the OMI
spectral response (slit function). In these convolutions the spec-
tral features of the sun were accounted for (the so-called
effect).

Detailed studies were performed to find the optimum fit
window for ozone. The conclusions of these studies are that
the main drivers for the fit window are the sensitivity of the
slant column density to the atmospheric temperature and to the
instrument signal-to-noise. The temperature effects are smallest
in the parts of the spectrum where the correlation between the
high-pass-filtered ozone cross section and its derivative to the
temperature is minimal. The signal-to-noise effects put a lower
limit on the width of the fit window. Based on these consid-
erations a 5-nm-wide window centered around 334.1 nm was
selected as the default fit window for OMI. For this fit window a
second-degree polynomial is used as high-pass filter. Extension
of the fit window toward smaller wavelengths has several con-
sequences, such as a reduced sensitivity to instrumental noise,
an increased sensitivity to the temperature profile, a reduced
accuracy of the fit because DOAS becomes less accurate for
stronger absorption, a slightly increased sensitivity for the
ozone profile, and the requirement to go from a second-order
polynomial to a third-order polynomial as high-pass filer. The
sensitivity studies that were performed showed that some other
windows give a good performance, but that the window selected
is optimal for an OMI-like instrument for average conditions.

B. Step 2: Air Mass Factor Correction

In DOAS, the air mass factor is used to translate the slant
column density into a vertical column density. The air mass
factor is defined as the ratio of the slant column density,

, and the vertical column density, . From this definition it
follows that will depend on the viewing and solar geometry,
the fit window used, the surface albedo, the surface pressure,
the actual ozone profile, clouds, and aerosols, as they all affect
the apparent slant column amounts of ozone. The air mass
factor is computed by simulating the measured spectra and
applying DOAS to this simulated spectrum. For the simulations
of the measured OMI spectrum a radiative transfer model is
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Fig. 2. Effective air mass factor (the air mass factor defined by the geometrical
air mass factor) as a function of the total ozone column for two solar zenith
angles. Each line shows the result of 648 profiles derived from the TOMS V8
ozone profile climatology. The symbols show the mean effective air mass factor
at specific column amount ozone, and the bars show the minimum and maximum
values. The solar zenith angles are 44 and 74 . The viewing angle is 33 . The
relative azimuth angle is 90 , and the surface albedo is 0.1.

used, in combination with a simple OMI simulator. The OMI
simulator is used to translate the high-resolution spectra from
the radiative transfer model into spectra at the OMI spectral
resolution and sampling. On the simulated spectra, the DOAS fit
function is applied to compute the slant column density. Since
for the simulated spectra the vertical column density is known,
the air mass factor can be computed as . The
calculated air mass factor is accurate if the model atmosphere
used in the radiative transfer calculations resembles the actual
atmosphere.

The air mass factor is precomputed and stored in lookup
tables as a function of the sun–satellite geometry, the surface
pressure and albedo, latitude, month, and total ozone amount.
The surface pressure is derived from the altitude of the ground
pixel, assuming a standard sea level pressure of 1013 hPa. The
ozone profiles are based on the TOMS V8 ozone climatology
[7]. The surface albedo is derived by combining the TOMS
surface albedo climatology [19] with actual snow cover and sea
ice coverage information. Fig. 2 shows the dependence of the
air mass factor on the ozone profile, if no a priori information
on the ozone profile shape were used. This figure shows that
the dependence is largest for ozone hole conditions, whereas
the dependence on Solar zenith angle is very weak. To reduce
the uncertainty in the air mass factor due to the variations in
the ozone profile, the appropriate profile is estimated based
on the measured slant column density. To derive a relation
between the slant column density and the ozone profile, three
ozone profiles are used that cover the natural variability of
the ozone profile for a given location and time period. For
each of these profiles the slant column density and air mass
factor is calculated for a given sun–satellite geometry, cloud
condition, and surface property. In this manner a relationship
is derived between the air mass factor and the slant column
density, as illustrated in Fig. 3. The air mass factor to be
applied to the measurement is computed by evaluating this
relationship for the measured slant column density.

Fig. 3. (Left) Ozone profiles from the TOMS Version 8 climatology for 55 N
for December, with a total column of ozone of 225, 375, and 575 DU. (Right)
Effective air mass factors as a function of the slant column density for two
sun–satellite geometries, as computed for the ozone profiles shown in the left
panel. The sun–satellite geometries are: solar zenith angle 44 and 74 ; viewing
zenith angle 34 ; and relative azimuth angle 90 . The surface albedo is 0.1.

C. Step 3: Cloud Correction

When a ground pixel is completely or partly covered by
clouds, the algorithm has to account for the effects of clouds.
Two kinds of effects are accounted for: first, the effects of
clouds on the air mass factor, and second, the effect that clouds
obscure part of the ozone column for satellite instruments.

To calculate the air mass factor for cloudy conditions a cloud
model is necessary. To determine the air mass factor for cloudy
conditions, the cloud fraction and cloud pressure from the OMI
O -O cloud product are used [20]. For consistency, it is impor-
tant to use the same cloud model as used in the cloud product.
This cloud model represents clouds by opaque Lambertian sur-
faces with an albedo of 0.80, placed at the cloud pressure. It was
found by [21] that this value for the cloud albedo gives the best
results for ozone retrieval using DOAS. This cloud model con-
siders all clouds to be thick, single layer clouds. Partly cloudy
pixels are treated as the weighted sum of a clear and a cloudy
pixel. Pixels that are fully covered with thin clouds are repre-
sented by partly cloudy pixels with a thick cloud. Using this
cloud model, the air mass factors for fully cloudy conditions
are determined in the same manner as those for clear ground
pixels described in the previous section, but with a Lamber-
tian surface of albedo 0.80 at the cloud pressure level. Partly
cloudy ground pixels are treated as the weighted sum for clear
and cloudy conditions

(4)

where the weight is the fraction of the radiance that is due to
the cloudy part of the ground pixel.

The amount of ozone below the Lambertian cloud is called the
“ghost column” and is computed by integrating the ozone profile
from the surface to the cloud pressure. The profiles are taken
from the TOMS V8 climatology [7]. Just as for the air mass
factor, the appropriate profile, and hence, the appropriate ghost
column is estimated using the measured slant column density.
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Fig. 4. Total ozone column for November 1, 2004, derived using the OMI DOAS algorithm.

Finally, the vertical column amount can be computed

(5)

where is the ghost column.

III. ERROR ANALYSIS

During the development phase of the algorithm an extensive
error analysis was performed to estimate the expected accuracy
of the algorithm [22]. The focus of this error analysis was on
nominal cases. Exceptional cases, such as, for example, desert
dust and polar stratospheric clouds, were assessed separately.
Table I summarizes the results from the error analysis for each
of the algorithm steps (slant column density, air mass factor, and
cloud correction), as well as for the vertical column density. In
this table, a distinction is made between the total and the rela-
tive error. The relative errors are defined as errors that can vary
for two measurements for the same location for two successive
days. Thus, the systematic errors, which are not important for
deriving trends, are excluded from the relative error. As can be
seen in Table I, the relative error of the vertical column den-
sity is 1.3% for a cloud-free pixel, 2.2% for a cloudy pixel, and
1.7% for a partly cloudy pixel. For cloudy conditions, the rela-
tive error is dominated by errors in the air mass factor related to
clouds, whereas for cloud-free conditions, it is dominated by the
instrument signal to noise. If one is interested in trends, it seems
best to focus on cloud-free conditions. Then random errors, e.g.,
instrument noise, will average out. The error that dominates for
trend analysis is then a bias in the assumed ozone profile.

TABLE I
ERROR ESTIMATES FOR THE OMI OZONE DOAS PRODUCT. ERRORS ORDERED

ACCORDING TO THE THREE ALGORITHM STEPS: SLANT COLUMN DENSITY,
AIR MASS FACTOR, AND CLOUD CORRECTION, AS WELL AS FOR THE

RESULTING ERROR ON THE TOTAL COLUMN OZONE

IV. FIRST RESULTS

From the beginning of October until the end of November
2004, OMI measured the Earth radiance almost continuously.



VEEFKIND et al.: TOTAL OZONE FROM THE OMI USING THE DOAS TECHNIQUE 1243

Fig. 5. Comparisons between the OMI total ozone column from the DOAS
algorithm and available Brewer stations in the Northern Hemisphere, for the
period November 1–16 , 2004. Filled squares are used from Brewer data from
the WOUDC. Open circles are used for preliminary (quick-look) Brewer data.
OMI data points colocated within 50 km and 1 h are included in this figure.

This time period covers an important part of the Antarctic ozone
hole for that year. Fig. 4 shows an example of the total ozone
derived for November 1, 2004, clearly showing the Antarctic
ozone hole. This figure also illustrates the daily global coverage
of the OMI instrument. To make a first assessment of the quality
of the ozone data from the algorithm, a comparison was per-
formed with available Brewer stations in the Northern Hemi-
sphere. It is noted that this exercise is the very beginning of
the validation effort. As described in [23], the core validation
will include many more comparisons with all sorts of correla-
tive data. The first comparisons show that the average bias of the
OMI DOAS total ozone, as compared with the Brewer results,
is %, see Fig. 5. The OMI data seem to be slightly
higher than the Brewer observations. Although the reported dif-
ference is of the order of the expected accuracy, we believe that
further improvement is possible. Apart from improvements in
the (spectral) calibration of the instrument, improvements in the
cloud correction part will become possible if better estimates of
the cloud fraction become available. Also we expect that the
Brewer data become better when the final data for all locations
can be used.

V. CONCLUSION

In this paper, the DOAS algorithm for deriving the total ozone
column from OMI data was described, and first results are pre-
sented. First comparisons with ground-based observations for
the Northern Hemisphere for a limited time period, show agree-
ment within 3%. This is of the same order of magnitude as ex-
pected from an error analysis. However, significant improve-
ment of the OMI total ozone product is expected.
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